Andreas Burmester und Martin Schawe

drunder und drüber

Altdorfer, Cranach und Dürer
auf der Spur

Herausgegeben von den
Bayerischen Staatsgemäldesammlungen, München
drunter und drüber

175 Jahre Alte Pinakothek

Altdorfer, Cranach und Dürer auf der Spur
Drunter und drüber und unsichtbar.

Eine Geschichte der technischen Photographie an den Münchner Pinakotheken

Andreas Burmester

Der Ausgangspunkt der technischen Photographie im Museum liegt nicht bei Cranach, Dürer oder Altdorfer. Zugegeben, es wird auch eine Portion Neugierde dabei gewesen sein, was man mit den neuen X-Strahlen, den empfindlicheren Photoplatten oder einem im Infraroten sensibilisierten CCD-Sensor sehen kann, aber am Anfang standen massive Bemühungen, mit der Vielzahl der auf den Markt geworfenen Fälschungen fertigzuwerden. Fälschungsprozesse in Hamburg, Berlin oder Stuttgart schrieben Geschichte, entpuppte sich doch die technische Photographie als weitaus beweiskräftiger als das unbestechliche Auge des Kunstsachverständigen. Es ging um

Röntgen. Von neuen Strahlen.

Doch Röntgens Entdeckung ist mehr als eine Kuriosität, sie öffnet ungeahnte Perspektiven. Zum Ärger Röntgens fesselt seine Mitmenschen weniger die Physik hinter den Strahlen, sondern alles wird durchleuchtet. Röntgens
Entdeckung zeigt dem Auge bislang Unsichtbares. Die Röntgenstrahlen erweitern damit erstmalig die Fähigkeiten unseres Auges, und in Kombination mit der Photographie erlauben sie, das Unsichtbare gar abzubilden. Was bietet sich eher an, als auch Gemälde zu röntgen? Es mag überraschen, aber Röntgen selbst scheint diese Thematik wenig zu beschäftigen. Als Physiker ist er primär auf die Wechselwirkung unterschiedlichster Materialien mit den von ihm entdeckten Strahlen konzentriert. Die Holztür seines Labors in Würzburg (Abb. 3 und 4), ein Gewichtsatz, eine elektrische Spule, die Hand seiner Frau oder ein Jagdgewehr sind seine Themen. Röntgen macht dabei sogar eine weitere, für das Röntgen von Gemälden entscheidende Beobachtung. In einer seiner drei Schriften – mehr hat er nie zu seinen X-Strahlen veröffentlicht – schreibt er: »Ein Holzstab [...], dessen eine Seite mit Bleifarbe weiß angestrichen ist, verhält sich verschieden, je nachdem er zwischen Apparat und Schirm gehalten wird; fast vollständig wirkungslos, wenn die Strahlen parallel der angestrichenen Seite durchgehen, entwirft der Stab einen dunklen Schatten, wenn die Strahlen die Anstrichfarbe durchsetzen müssen.« Röntgen hat also nicht nur entdeckt, dass seine Strahlen Holztäfeln ungehindert durchdringen, sondern auch um die absorbierende
Wirkung von Bleiweiß gewusst. Was hätte nähergelegen, als Tafelbilder zu röntgen, auf denen bleihaltige Pigmente ja häufig verwendet wurden?

So war es anderen überlassen, der Anwendung seiner X-Strahlen auf Gemälde den Weg zu bereiten. Wir wissen nicht, was Röntgen von Versuchen in Dresden hält, wo einer seiner Freunde, August Toepler, 1896 metallische und nichtmetallische Pulverfarben in Farbdöschen durchleuchtet. Hat er die Experimente seines Schülers, Walter König, in Frankfurt verfolgt, der zwar keine Gemälde, aber doch eine ägyptische Mumie röntgt (Abb. 5)? Immer wieder wird berichtet, dass bereits 1896 die erste Aufnahme eines Gemäldes an der Münchner Universität gemacht worden sei, also noch bevor Röntgen dem Ruf dorthin folgte. Leider ist die damals gemachte Aufnahme des sogenannten Burgerschen Schmerzensmannes, angeblich von Dürer, nicht überkommen. Wir wissen allerdings, dass sie der junge Kunsthistoriker Walter Gräff (1876–1934), damals gerade Volontär an den Pinakotheken und eine zentrale Figur in unserem Geschehen, im Jahr 1910 selbst gesehen hat. 1926 bekam Gräff sogar Gelegenheit, den Schmerzensmann erneut zu röntgen, sodass die vermutlich für Deutschland früheste Röntgenaufnahme auf indirektem Wege erhalten ist (Abb. 6). Ganz identisch sind die Aufnahmen von

Erst Anfang 1916 wendet sich Heinz Braune (1880–1957), Konservator an den Pinakotheken, an seinen Vorgesetzten Friedrich Dörnhöffer mit der Bitte, im Hinblick auf die »geplante Abnahme der Uebermalungen von Dürers Beweinung« Aufnahmen bei Röntgen – seit 1900 Ordinarius an der Universität München – zu machen. Angeregt durch, wie er schreibt, »den beiliegenden Artikel von Dr. Faber in der Museumskunde«,\[12\] habe er sich mit Röntgen in Verbindung gesetzt,\[13\] um »mit ihm etwa anzustellende Versuche aus dem Bereich der staatlichen Galerien zu besprechen«. Röntgen habe dem Vorhaben zugestimmt, möchte die Kosten der Versuche jedoch von den Pinakotheken getragen wissen.\[14\] Da er sich nicht sicher ist, ob Röntgen den Beitrag Fabers kennt, sendet Braune auch ihm ein Exemplar des Aufsatzes zu. Am 7. Februar 1916 sind dann – vermutlich als weniger

Abb. 5
Röntgenaufnahme einer Kindermumie von 1896

Abb. 6
Röntgenaufnahme des Bürgerlichen Schmerzensmannes von 1926, digital kontrastverstärkt
Falle der Hl. Magdalena macht die Röntgenaufnahme den schlechten Zustand des Gemäldes sichtbar: Quer über das Gesicht verlaufende Kratzer und dadurch bedingte Farbausbrüche in den originalen Malschichten dokumen-
tieren dies anschaulich. Zudem überzieht ein feines Craquelé die Malschich-
ten, das auf der Röntgenaufnahme weit besser als auf dem dunklen Original ablesbar ist. Braune berichtet, dass das Porträt deshalb wahrscheinlich "nahezu vollständig übermalt" sei, jedoch drangen "die Strahlen [...] durch die Uebermalungen glatt durch, zeichneten aber die darunter liegende origin-
ale Farbe mit sämtlichen Schäden, Sprüngen und Verkittungen aufs deut-
lchste in der [Photo]Platte ab. Danach konnte festgestellt werden, dass die Schäden eine bei weitem geringere Fläche einnahmen als die Uebermalun-
gen. [...] Das total übermalte Ohr, das durch die Uebermalung ungewiss
durchschimmerte, lag in der Röntgenaufnahme vollkommen klar zu Tage
und liess alle Schäden der originalen Farbe deutlich erkennen. Die Abnahme
derer Uebermalung durch Kustos von Tettenborn ergab eine vollständige Uebereinstimmung mit der Röntgenplatte: Die Probe auf das Exempel
bestätigte die Richtigkeit und Zuverlässigkeit der Aufnahme in allen Pun-
ten."

Eine einzige Röntgenaufnahme liefert also zwei grundlegende
Erkenntnisse: Der problematische Zustand des Gemäldes bedingte Überma-
lungen, die allerdings weit großflächiger ausfielen, als es der Zustand erfo-
derlich gemacht hätte, und die Aufnahme ergänzt das geschulte Auge Brau-
nes vorzüglich. Braune kommt damit zwingend zum Schluss, dass »die
Röntgenaufnahme [...] hier nun ein ausgezeichnetes Resultat [ergibt], ja man
darf sagen das denkbar beste Resultat«.24

Mit Sicherheit führten bereits 1916 diese wenigen Probeaufnahmen allen
Beteiligten das Potential vor Augen, welches das Röntgenverfahren bis
heute für die Untersuchung von Gemälden hat. Zu diesem Zeitpunkt war
wohl der Wunsch geboren, für die Pinakothek ein eigenes Röntgengerät
anzuschaffen, denn – wie Dörnhöfer Jahre später notierte – die »[…] Auf-
nahmen waren in Universitätsinstituten, Krankenhäusern und Durchleuch-
tungsinstituten gemacht worden. Da es sich verbot, wegen der damit wäh-
rend des Transportes verbundenen Gefahren wertvolle Staatsbilder in solche
Institute zu verbringen, und die mit Transport und Aufnahme verbundenen
Kosten auf die Dauer zu hoch erschienen, entschloss sich die Direktion zum
Ankauf eines eigenen Apparates.«25
Röntgen. Frühe Erfolge und Stillstand.

Gräff, der nach eigenen Aussagen seit 1924 röntgt, erweitert 1925 diesen Röntgenapparat für die Pinakothek und macht damit zum ersten Museum Deutschlands mit einem solchen Gerät. Hierbei ist durchaus an eine kommerzielle Nutzung gedacht, wofür eine Gebührenordnung spricht, die für Durchleuchtungen 25 RM, für photographische Aufnahmen je 50 RM und für ein Röntgengutachten 100 RM festsetzt.24 Für den Umgang mit dem leicht brennbaren Röntgenfilm, die zu dieser Zeit bereits im medizinischen Bereich häufig eingesetzt werden, gelten gesonderte Richtlinien zur Verhütung von Brandgefahren, die natürlich auch für die Pinakotheken Gültigkeit haben.25 Erste Ergebnisse sind außerordentlich vielversprechend: Es ist Gräff, der mit der erstmaligen Publikation der Röntgenaufnahmen von Raphaels \textit{Hl. Familie aus dem Hause Canigiani} auf den kunsttechnologischen und auch kunsthistorischen Nutzen des Röntgenverfahrens aufmerksam macht (Abb. 9).26 Anhand der Photojournale lässt sich die Aufnahme der drei einzelnen, jedoch dann zusammennmontierten Filme in das Jahr 1925 datieren; sie müssen also zu den ersten Aufnahmen mit dem neuen Röntgengerät gerechnet werden. Der Versuchsaufbau ließ vermutlich nur ein Röntgen randnaher Bereiche zu; in diesem Fall kein Schaden, denn genau dort finden sich die damals noch übermalten, heute freigelegten Wolkenpartien und Putten.27 Die drei Röntgendetalle zeigen das damals Unsichtbare, sicherlich ein großer Triumph für Gräff.

Offenkundig realisieren weder Braune noch Gräff, dass der bereits erwähnte Weimarer Arzt Alexander Faber (Abb. 10) nicht nur eine für die Pinakothek überraschend nützliche Anwendung der Röntgenstrahlen publizierte,28 sondern dass er sich das Verfahren zum Patentieren ließ.29 Die beiden Aufsätze Fabers aus dem Jahr 1914 bilden erstmalig auch Röntgenaufnahmen einiger weniger Gemälde ab (Abb. 11 und 12), jedoch fehlt aus Gründen des Patentschutzes eine Darstellung des von Faber eingesetzten Röntgenapparates. Die Versuchsanordnung wird kaum anders aussehen haben als eine Jahre später veröffentlichte (Abb. 13), in der die Röntgenröhre – die vermutlich nach allen Seiten in hohen Dosen strahlte und deshalb für den Experimentator oft eine beträchtliche Gesundheitsgefährdung darstellte30 – über dem Gemälde angeordnet war, unter dem dann der Film lag. Die Versuchsanordnung erlaubte folglich nur die Aufnahme kleiner Formate oder, falls größer als der Film, nur von Details. Zum Zeitpunkt der Patentierung und Publikation scheint Faber weder von den Münchener Versuchen von 1896 noch von Arbeiten von Parey und Ledoux-Lebret in Frankreich Kenntnis zu haben, die ungefähr zeitgleich Gemälde röntgen.31 Fabers Patent hingegen entpuppt sich in den kommenden Jahren als ungemein hemmend.

Röntgen. Vom Einzelfilm zur Montage.

in das ein circa 30 x 40 cm großes Loch geschnitten war. Durch dieses trat die Strahlung, die aus der unter dem Loch fixierten wassergekühlten Röntgenröhre emittiert wurde. Der Röntgenfilm wurde, sofern konservatorisch vertretbar, direkt auf die Gemäldeoberfläche gelegt, woraus eine äußerst scharfe und aufgrund der hohen Auflösung des Röntgenfilms detailreiche Röntgenaufnahme resultierte. Die Röntgenröhre selbst war auf einer Halbkreisschiene gelagert, was – allerdings selten genutzte – Röntgenstereoaufnahmen und Schichtaufnahmen gestattet. Letzteres Verfahren bildet nur die dem Film nächste Schicht – die Malschicht – scharf ab, während durch Wandern der Röhre der zum Beispiel störende hölzerne Träger durch Vielfachprojektion unscharf bleibt. Der Versuchsaufbau macht deutlich, dass die Belichtung eines Gemäldes, das größer als 30 x 40 cm ist – das seit Langem in den Pinakotheken gängige Röntgenfilmformat –, auf einer Vielzahl von Einzelfilmen erfolgen muss, die dann auf Positivpapier umkopiert werden. Das Umkopieren auf Positivpapiere und deren sorgsame Montage erlauben in den Fünfziger- und Sechzigerjahren Röntgenmontagen hoher Qualität.

Abb. 14
Kurt Wohlfte an seinem Siemens
Röntgengerät, um 1932
häufig Aufnahmezeiten in den frühen Morgenstunden anbe-
raumt, wenn die Galerien noch besucherfrei waren. Vorteile
 dieses Vorgehens sind eine Schonung des Gemäldes, das unter
Umständen sogar an seinem gewohnten Platz hängen blei-
ben kann – der Filmtippich wird zwischen Tafel und Wand
oder gar zwischen Keilrahmen und Leinwand geschoben –
und ermöglicht eine gleichmäßige Schwärzung der Filme.
Hierzu müssen allerdings alle Filme gemeinsam nassche-
misch entwickelt werden, was außerordentliche photographi-
sche Fähigkeiten im Nasslabor erfordert. Interessanterwei-
se hat sich in den Pinakotheken die aus Krankenhäusern be-
kannte maschinelle Entwicklung der Röntgenfilme ebenso
wenig wie die Verwendung großformatiger Röntgenfilme von
der Rolle durchgesetzt. Unter bestmöglicher Kompensation
von geometrischen Verzerrungen nahilos zusammengefügt,
werden die montierten Filme für die Reproduktion auf kon-
ventionellem Weg abphotographiert. Eine der eindrucksvoll-
enen Belege für eine in der beschriebenen Weise gefertigte, aus
der Mitte der Achtzigerjahre stammende Aufnahme ist die Röntgenmontage
(Abb. 15 und 17) zu Jacopo Tintorettos Himmelfahrt Mariä aus der Oberen
Pfarre in Bamberg (Abb. 16). Die Aufnahme erfolgte mit einer Strontium-
röhre bei 51 kV/3 mA, wobei die Entfernung von der Röhre zum Objekt
640 cm bei einer Belichtungszeit von 5 Minuten betrug. Das Format von
446 x 271 cm erforderte zwei Belichtungen von je 55 aneinandermontierten
Filmen. Nach der Entwicklung wurden die Filme in drei Dritteln montiert,
auf einer Leuchtwand abphotographiert und als Photopositive zu einer
Gesamtmontage zusammengesetzt. Es sollte angemerkt werden, dass die
Montage der 110 Filme durch Hubertus von Sonnenburg in drei Wochen
reiner Handarbeit entstand, wobei ein im Millimeterbereich liegendes Ver-
rutschen der einen Hälfte der Filme während der Belichtung wie auch die
Verzerrung zu den Rändern massive Schwierigkeiten bereitete. Erst der Aus-
schnitt (Abb. 15) zeigt die hohe Qualität der Montage, wobei sich die Kanten
der Filme nur zart abzeichnen.

Als Ersatz für das in die Jahre gekommene Kristalloflex II wurde 1992 ein
Isovolt DS 60 der Firma Seifert erworben, wiederum mit Chromröhre, einer
automatischen Regelung des Röhrenstromes sowie variablen Arbeitsab-
stand. Der Versuchsaufbau entspricht dem für das Nanodor geschilderten,
wobei das untersuchte Gemälde auf einer leicht nach hinten geneigten Auf-
nahmevorrichtung steht, auf der sich die vormontierten Filme leicht mit
Klebeband befestigen lassen – ein letzter Schritt, der belegt, dass sich selbst
so etablierte Verfahren wie das Röntgen immer weiterentwickeln.
Walter Gräff. Kunsthistoriker, Photograph, Pionier.

Mikroskop von Zeiss, 1925 dann eines von Leitz, das eine bis zu 40-fache Vergrößerung erlaubt. In Gräffs Nachlass haben sich neben seinem Mikroskop auch eine Reihe von Mikroskopaufnahmen erhalten, die er offenkundig für Lehrzwecke an der Universität München nutzte (Abb. 19).

Als begabtem Photograph waren Gräff alle Werkzeuge in die Hand gelegt, um schon sehr früh Vergrößerungen unter Wahl geeigneter Photoplatten und Filter sowie auch Streiflichtaufnahmen – also unter seitlichem Lichteinfall – zu machen (Abb. 20 bis 22). Gräff selbst berichtet, er habe »wohl als erster [...] direkte photographische Vergrößerungen einzelner Bildteile gemacht, wie sie in neuerer Zeit der Chemiker A. P. Laurie in London als Hilfsmittel zur Bilderuntersuchung, besonders des Pinselstriches, preist. Weiter gelang es mir, durch die Wahl geeigneter Platten und Filter sowie durch Aufnahmen bei seitlichem Lichteinfall dem Auge nicht unterscheidbare Pinselzüge photographisch festzustellen und so in Einzelfällen sichere Grundlagen zur Wiederherstellung von Gemälden zu schaffen. Diese Verfahren dienen auch dazu, Spuren von den Künstlern verwendeten Handwerkzeuges sichtbar zu machen, was zur Aufdeckung von Fälschungen führen kann.«

Parallel zu seiner Auseinandersetzung mit der technischen Photographie verfolgt Gräff die Einrichtung einer photographischen Abteilung an den Pinakotheken. Die Nutzung der Photographie an den Münchener Pinakotheken reicht dabei zumindest bis 1910 zurück. Gräff hält allerdings rückblickend fest, dass bis zum Eintritt des ersten festangestellten Photographen alle photographischen Arbeiten in seinen Händen lagen. Gräff betreibt in dabei bemerkenswerter Weise nicht nur die Photographie in Schwarz-Weiß,

Gräff hat sich aber auch mit neueren Verfahren der Farbphotographie befasst, etwa mit dem 1916 von Arthur Traube entwickelten Uvachromieverfahren. Dieses beruht auf der Belichtung von drei Photoplatten unter Nutzung spezieller Uvachromfarbfilter (Gelb, Rot, Blau). Die drei Platten

Weitere Hinweise auf die Entstehung einer photographischen Abteilung in den Pinakotheken gibt ein handschriftliches Photojournal: Im Juli 1921 beauftragt Gräff einen Photographen, Michael Riedmann (1888–1959), mit der Erstellung von Photos. Im Oktober findet Riedmann Anstellung,40 denn offenkundig ist endlich die Entscheidung für die Einrichtung eines museumsseigenen Photostudios gefallen. Riedmann wird zum 1. Februar 1922 auf eine feste Stelle in der Alten Pinakothek übernommen.41 Die Wahl fiel nicht
zufällig auf Riedmann, denn dieser sei, wie Gräff berichtet, als ehemaliger Militärphotograph «mit den modernsten Verfahren und Apparaten bekannt geworden».

Die noch überliefernten Photojournalen belegen Platten aller Größen, von 18 x 24 cm, 13 x 18 cm, 24 x 30 cm und selbst 30 x 40 cm. Die Ausstattung des Ateliers in der Alten Pinakothek besteht unter anderem aus einer 30 x 40 cm-Stativkamera, einem Kopiergerät und allem, was für die Entwicklung benötigt wird.

Anhand der Photojournalen ist die Tätigkeit der jungen Abteilung noch heute weitgehend nachzuvollziehen. Die Arbeiten konzentrieren sich auf ein «Durchphotographieren» des Bestandes für die Vorbildsammlung und das Inventar. Der Stellenwert der Photographie wird unter anderem aus aktuellem Anlass, nämlich «durch den Bilderdiebstahl in der Galerie Burg-hausen augenfällig gemacht, da naturgemäß die Nachforschung nach einem entwendeten Bild durch die Photographie sehr erleichtert wird».

Darüber hinaus werden die Nachfrage nach Abbildungsmaterial für Publikationen und Postkarten sowie die täglichen Bedürfnisse eines großen Museums den Photographen bald unverzichtbar gemacht haben. Eine erstaunliche Anzahl von Gemälden passiert so in den ersten Jahren Riedmanns Atelier. Zustandsaufnahmen für die Restaurierung oder Detailaufnahmen scheinen nur in
geringerem Umfang gemacht worden zu sein. Erst ab den Dreißigerjahren etabliert sich die technische Photographie, wobei häufig Gemälde im Privatbesitz untersucht werden. Diese Entwicklung könnte auf die rege gutachterliche Tätigkeit Gräffs zurückzuführen sein, der alle Möglichkeiten der technischen Photographie nutzt. Im Zusammenhang mit der Idee, auf den gestiegenen Bedarf an Photoaufnahmen durch die Einstellung eines Volontärs auch für das Photoatelier zu reagieren und zugleich das gesammelte Wissen weiterzuleiten, schreibt Riedmann 1935, dass er – da mit Photoaufnahmen für die Zweiggalerien befasst – einen Volontär zu seiner Entlastung bei »Röntgen- und Mikro- und Quarzlampenuntersuchungen für die Gemäldeuntersuchung sehr nötig« habe.64 Gräffs Tod wird sich in der täglichen Arbeit der Abteilung als großer Verlust bemerkbar gemacht haben.

Zeitenwende. Ein Institut für Maltechnik.

genutzten 13 x 18 cm-Glasplattennegative und die dafür benötigten Platten-
kameras sowie die bis weit in die Achtzigerjahre geschätzte Schwarz-Weiß-
Photographie. Von Stagnation zu sprechen ist vielleicht auch deshalb nicht
vollkommen gerechtfertigt, weil in der Photoabteilung der Pinakotheken
unter Leitung von Roth eine Vielzahl von Reproduktions-, Fluoreszenz-, von
Infrarot- und vor allem von Röntgenaufnahmen hergestellt wurde. Die Wei-
terentwicklung der technischen Photographie, bislang eine der Stärken der
Pinakotheken und des Doerner-Instituts, stand aber offenkundig vor einer
breiten Anwendung zurück.

Jenseits des Sichtbaren. Fluoreszenzphotographie.

Kehren wir noch einmal in die Pionierzeit zurück: Detailphotographie, Streif-
licht, Röntgen wie Mikroskopie wurden rasch als wirksame Mittel erkannt,
den Zustand eines Gemäldes zu beurteilen. Wie geschildert, wurden diese
Röntgengeräte waren aus den bekannten Gründen ausgesprochen rar, und
die Mikroskopie an Gemälden war noch eine junge Wissenschaft. Doch wie
ist zu belegen, dass ein Gemälde aus dem Kunsthandel retouchiert, gar in
ganzen Partien übermalte ist? Geschickt gemacht, entzieht sich eine klare
Antwort dem Auge, auch einer schwach vergrößernden Lupe. Und selbst die
Röntgenaufnahme liefert in manchen Fällen nur vage Aussagen: Ist der
Himmel eines Bildes nicht mit Fehlstellen übersät, die sich häufig dominant auf der Röntgenaufnahme abbilden, entgehen großflächige Übermalungen in der Regel dem ungeschulten und manchmal selbst dem geschulten Auge. Was lag also näher, als andere Bereiche des unsichtbaren Lichts zu nutzen: die ultraviolette Strahlung.

Abb. 32
Kopie nach Hugo van der Goes,
Madonna, Detail, Normalaufnahme (links) und Fluoreszenzaufnahme (rechts)

Abb. 33
Fluoreszenzaufnahme von
Raphaels Hl. Familie, vermutlich vor Juli 1940

Diesseits des Sichtbaren. Infrarotphotographie.

Was lag nach dem Erfolg der Fluoreszenzphotographie näher, als auch andere, für unser Auge unsichtbare Strahlen zur Untersuchung von Gemälden zu nutzen? Ließ sich so in dem einen oder anderen Fall ein Einblick in weitere verborgene Schritte des Werkprozesses nehmen, ohne das Gemälde auch nur anzutasten? An dieser Stelle beginnt die lange Geschichte der Infrarottechniken, denen die Ausstellung drunter und drüber ihre schönsten Ergebnisse verdankt. Da ihre Entwicklung ganz wesentlich mit den Pinakotheken und dem dort beheimateten Doerner-Institut verwoben ist, soll versucht werden, die technische Entwicklung der Infrarottechniken bis in die jüngsten Tage nachzu vollziehen.

1936 erscheint dann aus der Feder von Friedrich Müller-Skjold, einem Mitarbeiter der »Lehr- und Versuchswerkstätten für Maltechnik« Wehles in Berlin und dann ab 1941 Mitarbeiter des Doerner-Instituts, ein Beitrag über die »Anwendung der Infrarotphotographie in der Maltechnik«, die sich spezieller, im Infraroten sensibilisierter Platten bedient. Das gegen Wärme empfindliche und damit nur begrenzt haltbare, speziell zu entwickelnde Plattenmaterial muss in Kombination mit geeigneten Sperrfiltern, die das sichtbare Licht ausfiltern, eingesetzt werden. Wie Müller Skjold beobachtet, erlaubt die Infrarotphotographie Rückschlüsse auf den Zustand, auf jüngere, restauratorische Eingriffe. Vor allem jedoch durchdringen die Infrarotstrah-
len die obersten Schichten und machen so Unsichtbares sichtbar. Doch ebenso wie andere Autoren übersicht Müllerskold vielleicht mangels geeigneten Untersuchungsmaterials die eigentliche Sensation, die Sichtbarmachung der Unterzeichnung.

Doch wie konnte die Unterzeichnung bislang so harschlagig übersehen werden? Dies hat neben technischen Gründen auch Ursachen, die im Zusammenhang mit den verwendeten Zeichenmitteln stehen: Wie wir heute wissen, war die Empfindlichkeit der verwendeten Photoemulsionen der Infrarotplatten nicht weit genug ins Infrarat reichend. In der Regel wurde nur der an das Sichtbare angrenzende Bereich bis 850, 950 oder in seltenen Fällen 1.050 Nanometer erfasst. Erschwerend absorbieren nicht alle Zeichenmittel im Nahen Infrarat: Rußhalte zeichenmittel können sichtbar gemacht werden, andere wie Eisengallustinten oder Bister können dagegen für
Infrarotstrahlen gänzlich durchlässig sein. Bei Mischungen wie rußhaltigen Eisengallustinten entscheidet es sich von Fall zu Fall. Einmal durchdringen also die Infrarotstrahlen darüberliegende Malschichten und werden an all den Stellen, die mit Unterzeichnung bedeckt sind, absorbiert, oder sie durchdringen einanderes Mal auch das Zeichenmittel, werden von der Gründierung reflektiert und sind damit nicht zu unterscheiden von Partien, auf denen keine Unterzeichnung liegt. Ein komplexes Problem, bei dem es immer wieder auf einen Versuch ankam, was die Infrarotphotographie zeigen würde. Vor dem Ergebnis stehen mit dem wärme- und lichtempfindlichen Infrarotmaterial vor allem Unbequemlichkeiten und eine aufwendige Entwicklung im Nasslabor. Man weiß also erst zeitverzögert, ob etwas von einer eventuell vorhandenen Unterzeichnung zu sehen sein wird oder nicht. Und wenn man nichts sieht, heißt es noch lange nicht, dass keine Unterzeichnung vorhanden ist, denn möglicherweise verhielt sich das Zeichenmittel transparent gegenüber Infrarotstrahlung? Zudem entpuppten sich im Gegensatz zu Inkarnatpartien farbige Malschichten aus Ocker, Ultramarin, Azurit oder Grünspan als häufig undurchlässig für die Infrarotphotographie. War die Infrarotphotographie also eine Sackgasse?

Infrarotreflektographie. Eine nobelpreiswürdige Entdeckung.

Die in den neuen Verfahren eingesetzten sogenannten Bildwandler, die Barnes-Kamera und das Infrarot-Vidicon ermöglichen die Generierung neuartiger Bilder, die ohne den wärmempfindlichen Infrarotfilm und seine langwierige Entwicklung im Nasslabor auskommen. Der wesentliche Vorteil des Verfahrens ist, dass es ein Echtzeitbild erzeugt, das eine sofortige Beurteilung erlaubt, ob eine Unterzeichnung zu sehen ist oder nicht. Die Neuerung bekommt den Namen Infrarotreflektographie. Abgesehen vom Echtzeitbild
liegt der entscheidende und bis heute von vielen nicht verstandene Unterschied zwischen Infrarotreflektographie und Infrarotphotographie darin, dass die Infrarotreflektographie den Wellenlängenbereich zwischen 800 und heute annähernd 2.200 Nanometer erfasst, also weit mehr in den Wellenlängenbereich des Nahen Infrarot als die Infrarotphotographie greift.105 Nach den Arbeiten von Van Asperen de Boer herrscht in Fachkreisen Gewissheit, dass über 1.200 Nanometer die meisten Malschichten gleich welcher Pigmentierung für die Infrarotstrahlung durchlässig sein müssten. Ein Großteil der üblichen Zeichenmittel würde sich also kontrastreich abbilden. Im Umgang mit einer neuen Grundig Infrarot-Fernsehkamera, die das Doerner-Institut 1971 erwirbt, wird allerdings rasch deutlich, dass die Bilder im Gegensatz zur Infrarotphotographie enttäuschend unscharf sind. So zeigt ein Vergleich der Infrarotphotographie mit der Infrarotreflektographie – der ersten nachweisbaren im Bestand der Pinakotheken aus dem Dezember 1973 – am Beispiel eines Kopfes aus der Hand von Lucas van Leyden (Abb. 44), dass die Infrarotphotographie (Abb. 45) scharf gezeichnete Schraffuren und Modellierungen am Hals zeigt, die Infrarotreflektographie (Abb. 46) dagegen unscharf ist.

damals verwendeten PAL-Bildschirme, die kaum über 620 Linien gelegen haben dürfte, weckt bei Nichtphysikern den Ruf nach der Infrarotphotographie, die aber – wie jetzt bekannt – im falschen Wellenlängenbereich arbeitet. Ein Dilemma, vermitteln doch die einfach aneinandergelagerten Details aus Dieric Bouts d. Ä. *Perle von Brabant* ein Gefühl dafür, was eine Montage der Einzelaufnahmen zu einer 1:1-Gesamtaufnahme liefern könnte.

Der Einstieg zur digitalen Bildverarbeitung

Abb. 50
Infrarotreflektographie, Montage
und die Landung in der digitalen Welt ist hart. Der naive Wunsch, Gemälde in hoher Auflösung digital aufzunehmen, bekommt durch die Tatsache, dass die damals beste digitale Kamera maximal 3.000 x 2.300 Bildpunkte liefert, einen spürbaren Dämpfer. Gemessen an heutigen Digitalkameras sind die damaligen 6,9 Megabyte zwar nicht so schlecht, doch entspricht diese Auflösung nur der eines Kleinbildfilms. Die Auflösung eines in den Pinakotheken gängigen Ektachroms der Größe von 13 x 18 cm erscheint damit unerreichbar. Nicht nur dies, sondern auch die immensen Kosten für Speichermöglichkeiten und die gerade erst eingeführten teuren Workstations scheinen für die analoge Photographie und gegen jegliche digitale Neuerung zu sprechen.

Digitale Infrarotreflektographie. Potential zur Weiterentwicklung.

In diesem Moment der Ratlosigkeit stößt die Idee, alles Vorhandene, den VASARI Linearrobo ter, die digitale Bildverarbeitung und die analoge Infrarotreflektographie, zusammenführen. Nachdem seit der Entdeckung durch Van Asperen de Boer über zwei Jahrzehnte lang keine wesentlichen Impulse zur technischen Weiterentwicklung der Infrarotreflektographie zu verzeichnen sind, kündigt sich damit eine drastische Qualitätsanhebung an, ohne die es die Ausstellung *drunter und drüber* nicht gäbe.

Es sind vor allem der immense Zeitaufwand bei der Anfertigung größerer Infrarotmontagen und die mit den analogen Komponenten kaum zu steigernde Qualität, die nahelegen, das Thema Unterrichtung mit der digitalen Revolution zu verknüpfen. Ließ sich doch der VASARI-Linearroboter nutzen, um eine Hamamatsu Vidicon-Kamera jüngerer Generation hochpräzise vor dem untersuchten Gemälde zu verfahren, damit zugleich die Auflösung zu erhöhen und vor allem den Aufnahmeprozess reproduzierbarer, weniger fehleranfällig und auch schneller zu machen. Ein technischer Mangel schien anfänglich allerdings kaum zu lösen: Es ist die geringe thermische Stabilität der Kamera, welche sich während der unter Umständen mehrstündigen Aufnahme spürbar aufheizt, wodurch sich die Bildqualität stetig verschlechtert. Erst der Einsatz einer Peltier-Kühlung, die die empfindliche Röhre auf verträglichen Temperaturen hält, fängt diesen Aufheizeffekt wirksam ab, sodass auch über Stunden ein Betrieb ohne merklichen Qualitätsverlust möglich ist (Abb. 51). Eine für das Nahe Infrarot optimierte Optik erlaubt Auflösungen von 5 beziehungsweise 10 Bildpunkten pro Millimeter Gemäldeoberfläche. Diese Auflösung mag hoch erscheinen, entspricht jedoch maximal einem Achtel der Auflösung der Photoemulsion des Infrarotfilms. Bis zu 100 Bildpunkte pro Quadratmillimeter generieren große Datenn Mengen, die heute im Zeitalter des Terabyte und USB-3-Ports zwar lächerlich erscheinen mögen, damals jedoch kaum zu verarbeiten waren. Bei einer kameraseitigen Auflösung von 768 x 576 Bildpunkten und einem Bildausschnitt von rund 8 x 6 cm ist ein mäanderartiges Verfahren der Kamera zur Abbildung der gesamten Gemäldeoberfläche notwendig. Um die rund 152 x 122 cm große *Glimsche Beweitung* aus der Hand Dürers vollständig aufzunehmen, sind so über 800 solcher Teilaufnahmen erforderlich (Abb. 52). 800-mal macht die Kamera halt und nimmt – nach einer durch den Memoryeffekt des Bleisulfiddetektors bedingten Wartezeit – zur Verbesserung des Signal-

Infrarotreflektographie. Umwege erhöhen die Ortskenntnis.

 Bleibt nur noch ein Problem: Der zimmerfüllende VASARI-Linearroboter, die teure InGaAs-CCD-Kamera und der Mehrprozessorrechner sind zu immobil, um auch in der Galerie oder gar in einer Außengalerie wie Bamberg oder Burghausen zu Diensten zu sein. Die Lösung heißt OSIRIS, eine neue Kamera, zu der wir aber nur über einen Umweg gelangen. Dieser Umweg heißt MUßINI und MARC.

 Im Umgang mit digitaler Bildverarbeitung in den Pinakothen spielen zwei weitere Projekte eine große Rolle, die beide Kinder des VASARI-Projekts sind. Das eine, MUßINI, befasst sich mit Mal- und Zeichenmitteln im Nahen Infrarot und identifiziert über eine Variation der Wellenlänge der Beleuchtung unterschiedliche Tinten auf Handzeichnungen. MUßINI verbessert die Akzeptanz der digitalen Bildverarbeitung in den Pinakotheke, liefert aber vor allem Fertigkeiten im Umgang mit damals noch neuen Bildverarbeitungsalgorithmen.

 Alle bisherigen Anwendungen der Bildverarbeitung im Doerner-Institut kamenerten den Aspekt der Farbe gänzlich aus, obgleich sich VASARI andernorts auch der Vermessung von Farbe mithilfe der digitalen Bildver-

der Sorge ab, damit die technischen Untersuchungsmethoden von Kunstwerken stets in einer zweckdienlichen und damit verantwortbaren Weise ausgebaut werden und nicht in unerloser Theorie versanden. Selbst Kollegen mit einem Faible für die technische Photographie verkannten die wegweisenden Leistungen Gräffs, wie sich an der Einschätzung zeigt, dass die übermalte Himmelspartie und die Putten auf Raphaels *Ill. Familie* eigentlich erst seit 1950 bekannt gewesen wären, als die gesamte Tafel geröntgt wurde, und davor der Spekulation überlassen gewesen seien. Doch Gräffs Tun war gerade das Gegenteil von Spekulation, er und seine Pionierleistung sind nur vergessen.

Anmerkungen

Danksagung
Ohne die Beiträge von Dr. Florian Bayerer, Dr. James Hensley, Prof. Dr. Reimar Lenz, Dr. Udo Lenz, Dr. Manfred Müller, Dipl.-Ing. Lars Raaffelt, Dr. David Saunders, Dr. Helge Siefert und Dr. Susanne Wagini hätte dieser Artikel nie geschrieben werden können. Der Autor dankt vor allem Dipl.-Komm. Melanie Eibl, aber auch Eva Clausen, Dr. Gisela Goldberg, Dr. Elisabeth Hipp, Prof. Dr. Hermann Kühn, Dr. Martin Schawe und Martin Weber für wertvolle Anregungen. Die beschriebene Entwicklung zur hochauflösenden digitalen Infrarotreflektographie ist ohne die Projekte VASARI (Visual Arts System for the Archival and Retrieval of Images, EU-Projekt Esprit II Nr. 2649), MUSINI (Mal- und Zeichenmittel im Nahen Infrarot, Bundesministerium für Forschung und Technologie, Förderkennzeichen 03-BU9MUE) und MARC (Methodology of Art Production in Colour, EU-Projekt Esprit III Nr. 5937) und die zahlreichen Projektpartnern in ganz Europa undenkbar. Ihnen allen gilt mein Dank.

Abkürzungen
BHSTA = Bayerisches Hauptstaatsarchiv München
BSTGS = Bayerische Staatsgemäldesammlungen München
RDI = Abtafen des Reichsinstitutes Doerner-Institut

1 Burmester 1998.
2 Maieringer 1977.
4 Freundliche Mitteilung Dr. Uwe Busch, Deutsches Röntgen-Museum Remscheid, 29. März 2011.
5 Ebd.
7 Die von Bridgman 1964 und anderen wiedergefunden und neu verbesserte Vermutung konnte nicht verifiziert werden, da sich unter den von König 1896 publizierten größtformigen Röntgenaufnahmen keine findet, die ein Gemäldes zeigt.
8 König 1896, dort Taf. 4. Man beachte die Belichtungszeit von 14 Minuten.
9 Graff 1929 und Graff 1931 b, S. 22.
10 Benannt nach dem damaligen Eigentümer Burger, heutiger Verbleib unbekannt.
12 Faber 1914 b.
13 Schreiben Braune an Röntgen vom 19. Januar 1916, BSTGS, Registratur, Röntgenapparatur 38/2c.
15 Schreiben Braune an Röntgen vom 7. Februar 1916, BSTGS, Registratur, Röntgenapparatur 38/2c.
18 Hans Wortinger, Herzog Ernst in Bayern. Sohn Albrecht IV. Domberr in Köln und Würzburg, 1518, ehemals BSTGS, Inv.-Nr. 2532, heute abgetrennt an Schloss Berchtesgaden.
20 Kemerink et al. 2011.
21 Wie Anm. 16.
22 Ebd.
26 Graff 1929.
27 Von Sonnenburg 1983.
28 Faber 1914 a und b.
29 Deutsches Reichspatent 289.935, abgedruckt auch in Bridgman 1964.
30 Kemerink et al. 2011.
31 Bridgman 1964, dort aber Abdruck der Patentschrift Fabers.
32 Anon. 1926.
34 Welle 1932 a, S. 220.
35 Schreiben Carl Brandmayer an Graff vom 30. Januar 1931, BSTGS, Registratur, Röntgenapparatur 38/2c.
36 Schreiben Werner Rohrbach, Erfurt, an die Bayerischen Staatsgemäldesammlungen vom 5. November 1930, BSTGS, Registratur, Röntgenapparatur 38/2c.
37 Schreiben des Sächsischen Ministeriums für Volksbildung an das Bayerische Staatsministerium für Unterricht und
Kultus vom 14. Januar 1932, BStGS, Registratur, Röntgenapparatur 38/2c.
38 Schreiben Wehle vom 2. Dezember 1930 an Graff, BStGS, Registratur, Röntgenapparatur 38/2c.
39 Wie Anm. 23.
40 Schreiben Dörnhöfer an das Bayerische Staatsministerium für Unterricht und Kultus vom 26. November 1930, BStGS, Registratur, Röntgenapparatur 38/2c.
41 Schreiben Wehle an Graff vom 12. April 1931, BStGS, Registratur, Röntgenapparatur 38/2c.
42 Schreiben Dörnhöfer an das zuständige Ministerium vom 6. November 1931, BStGS, Registratur, Röntgenapparatur 38/2c.
43 Schreiben Hanfstangl vom 26. Juli 1946, BStGS, Registratur, Röntgenapparatur 38/2c.
44 Schreiben Wolters an das Landesmuseum Münster vom 30. September 1953, BStGS, Registratur, Röntgenapparatur 38/2c.
45 Vom Sonnenburg 1988.
47 Burmester et al. 1998.
48 Wie Anm. 4.
49 Graff 1932, S. 1.
50 Graff 1931 b und Graff 1932.
51 Emich 1913.
52 Graff 1932, Anm. 12, BStGS, Registratur, Lichtbildstelle 38/2b, siehe auch Graff 1933 c. – Zu Laurie siehe dens. 1926.
54 Matrigröße 24 x 30 cm.
55 Lumière 1914.
56 Graff 1911.
57 Traube 1931.
58 Uvachrom Firmenschrift 1920 aus Nachlass Graffs.
60 Einstellung auf Probe am 1. Oktober 1921.
61 Zum Werdegang Riedmanns siehe BStGS, Registratur, Personalakt Riedmann, Blatt 46 ff.
62 Graff 1932, S. 11.
63 Schreiben Buchner an das zuständige Ministerium vom 17. Juli 1933, BStGS, Registratur, Lichtbildstelle 38/2b, Belka und Hilda Boehr.
64 Interner Vermerk Riedmanns an Buchner vom 8. November 1933, BStGS, Registratur, Lichtbildstelle 38/2b.
65 Graff 1932, Anm. 13.
66 Ebd., S. 4.
67 Ebd., Anm. 16.
69 Schreiben Graff an das zuständige Ministerium vom 8. Juli 1933, BStGS, K. 4010.
70 Graff 1932, S. 4 und Anm. 11.
71 Haaberlein 1931.
72 Nachruf auf Michael Riedmann vom 25. August 1959, BStGS, Registratur, Personalakt Riedmann.
73 Anzeige von Nebentätigkeiten für 1939, BStGS, Registratur, Personalakt Riedmann.
74 Lebenslauf Roth vom 1. Februar 1946, BStGS, Registratur, Personalakt Roth.
75 Bundesarchiv R 55/869 Bl. 26 bis 75.
76 Burmester 2010.
80 Kögel 1920.
81 Anon. 1928.
82 Danckworts 1934, S. 89.
83 Kieslinger 1928.
84 Rinnebach 1931.
85 Graff 1931 b und Graff 1932.
86 Schreiben Quarzlampen Gesellschaft GmbH Hanau vom 11. März 1931, BStGS, Registratur, Röntgenapparatur 38/2c.
87 Filter CG 4 von Schott, wie von Graff auf Anregung durch Danckworts 1939 durch die Firma Schott unter dem Datum vom 29. April 1931 angefordert, BStGS, Registratur, Lichtbildstelle 38/2b.
90 Eggert 1935.
91 Helwich 1934.
92 Helwich 1937.
93 Müller-Skold 1936.
94 U. a., Agfa-Infrarotplatte 855.
95 Schwarffilter 84.
96 Filter 850 U. R. T. 8.
98 Brügel 1951, S. 153.
99 Schawe 2011, S. 66 f.
100 Wie Anm. 79.
102 Aulmann 1937.
106 Hamamasu-Infrarotkamera C2400-07-DSC mit Videokon- röhre N2060-06.
107 Array-CCD-Kamera von Kontron (ProgRes 3000).
113 Burmester et al. 1993.
114 Sensors Unlimited SU 320.
118 Burmester et al. 1996 b und c.
120 Gräff 1929, S. 572.
121 Wolters 1938.
123 Schreiben Buchner an das zuständige Ministerium vom 19. Mai 1936, BStz, Registrator, Personalakt Gräff.
126 Schreiben Wehlte an Gräff vom 2. Dezember 1930, BStz, Registrator, Röntgenapparat 38/2c.
127 Wehlte 1932 b, S. 73; der unter dem Einfluss Wehltes entstandene Übersichtsartikel von Berthold 1933 verweist z. B. mit keinem Wort auf Gräff.
128 Wehlte 1932 a.
129 Gräff 1931 a, S. 86.